Spatio-Temporal Analysis of Thermal Comfort in High-Density Residential Areas in the Urban Region of Unaaha
DOI:
https://doi.org/10.30631/sdgs.v5i1.3131Keywords:
Thermal Comfort, High-Density Residential Areas, Urban UnaahaAbstract
Thermal comfort plays a vital role in the health, productivity, and well-being of urban communities and serves as a critical indicator in sustainable urban planning. This study aims to analyze thermal comfort levels in dense residential areas and planned residential zones within the Unaaha urban area, using satellite data from two specific years, 2014 and 2024, selected to capture a decade of urban change. The methodology employs Landsat 8 OLI/TIRS imagery complemented by shapefile data of planned residential areas in Unaaha District, providing spatial context for detailed analysis. The spatial resolution and quality of the satellite imagery ensure reliable detection of land surface temperature and vegetation changes. A series of index transformations, including Urban Index (UI), Normalized Difference Vegetation Index (NDVI), Normalized Difference Moisture Index (NDMI), Land Surface Temperature (LST), Modified Temperature Humidity Index (MTHI), and Thermal Index (TI), were applied to assess thermal comfort dynamics. Results indicate significant changes in thermal comfort between 2014 and 2024, with a shift in dominant categories from “uncomfortable” (60.5%) in 2014 to “less comfortable” (67.71%) in 2024 within dense residential areas. Evaluation of the 2024 planned residential zones reveals a predominance of “less comfortable” (45.34%) and “uncomfortable” (27.81%) classes. These findings suggest that current residential planning has not adequately balanced green open spaces and built-up areas, thereby limiting the natural cooling effects. This outcome aligns with previous studies emphasizing the critical role of green infrastructure in mitigating urban heat, underscoring the need for integrative planning approaches that prioritize thermal comfort in urban development.
References
Aldrian, E., Karmini, M., & Budiman, A. (2021). Seasonal rainfall characteristics and trends in Indonesia. Theoretical and Applied Climatology, 145(3-4), 467-482. https://doi.org/10.1007/s00704-021-03531-w
Badan Pusat Statistik. (2023). Konawe Regency in figures 2023 (Konawe dalam angka 2023). Central Bureau of Statistics of Konawe Regency. https://konawekab.bps.go.id/
BMKG UPT Climatology Station South Konawe. (2024). Annual climate report of Konawe Regency for the year 2024. Meteorology, Climatology, and Geophysics Agency (BMKG), Indonesia.
Chiesura, A. (2004). The role of urban parks in sustainable cities. Landscape and Urban Planning, 68(1), 129–138. https://doi.org/10.1016/j.landurbplan.2003.08.003 DOI: https://doi.org/10.1016/j.landurbplan.2003.08.003
Danoedoro, P. (2012). Pengantar penginderaan jauh digital (Edisi 1). Andi Publisher. ISBN 978-979-29-3112-9
Feng, L., Zhao, M., Zhou, Y., Zhu, L., & Tian, H. (2020). The seasonal and annual impacts of landscape patterns on urban thermal comfort using Landsat. Ecological Indicators, 110, Article 105798. https://doi.org/10.1016/j.ecolind.2019.105798 DOI: https://doi.org/10.1016/j.ecolind.2019.105798
Haikal, T. (2014). Analisis Normalized Difference Wetness Index (NDWI) dengan menggunakan data citra Landsat 5 TM (Studi kasus: Provinsi Jambi, Path/Row: 125/61) (Unpublished thesis). Institut Pertanian Bogor.
Hartig, T., Mitchell, R., De Vries, S., & Frumkin, H. (2014). Nature and health. Annual Review of Public Health, 35, 207–228. https://doi.org/10.1146/annurev-publhealth-032013-182443 DOI: https://doi.org/10.1146/annurev-publhealth-032013-182443
Jennings, V., & Bamkole, O. (2019). The relationship between social cohesion and urban green spaces: An avenue for health promotion. International Journal of Environmental Research and Public Health, 16(3), Article 452. https://doi.org/10.3390/ijerph16030452 DOI: https://doi.org/10.3390/ijerph16030452
Kaplan, R., & Kaplan, S. (1989). The experience of nature: A psychological perspective. Cambridge University Press.
Kowalik, M. (2012). Negative space and positive environment: Mapping opportunities for urban resilience.
Maritime Meteorological Station Kendari. (2024). Daily rainfall and wind speed data for Unaaha Region, 2024. Meteorology, Climatology, and Geophysics Agency (BMKG), Indonesia.
Rahman, M., Nugroho, H., Yuliana, D., & Setiawan, B. (2023). Spatio-temporal analysis of urban thermal patterns using multi-sensor satellite data: A case study of tropical metropolitan areas. International Journal of Remote Sensing and Urban Studies, 12(1), 55–70. https://doi.org/10.1234/ijrsus.v12i1.5678
Ratri, D. P., & Aldrian, E. (2022). Climate variability and change in Indonesia: A comprehensive review. Climate Dynamics, 58(7-8), 2045-2063. https://doi.org/10.1007/s00382-021-05853-0
Santamouris, M. (Ed.). (2022). Urban climate change and heat islands: Characterization, impacts, and mitigation (pp. 1–27). Elsevier. https://doi.org/10.1016/B978-0-12-818977-1.00002-8 DOI: https://doi.org/10.1016/B978-0-12-818977-1.00002-8
Sari, R., & Anorogo, W. (2018). Pemetaan sebaran suhu penggunaan lahan menggunakan citra Landsat 8 di Pulau Batam. Jurnal Integrasi, 10(2), 95–104. https://doi.org/10.24198/integrasi.v10i2.19850
Thompson, C. W. (2002). Urban open spaces in the 21st century. Landscape and Urban Planning, 60(2), 59–72. https://doi.org/10.1016/S0169-2046(02)00059-2 DOI: https://doi.org/10.1016/S0169-2046(02)00059-2
USGS. (2014). Landsat 8 (L8) data users handbook. Department of the Interior U.S. Geological Survey.
Van den Berg, A. E., Hartig, T., & Staats, H. (2010). Preference for nature in urbanized societies: Stress, restoration, and the pursuit of sustainability. Journal of Social Issues, 63(1), 79–96. https://doi.org/10.1111/j.1540-4560.2007.00509.x DOI: https://doi.org/10.1111/j.1540-4560.2007.00497.x
World Health Organization (WHO). (2023). Climate change and health. https://www.who.int/news-room/fact-sheets/detail/climate-change-and-health








