Potential Evapotranspiration in Merapi Aquifer System
DOI:
https://doi.org/10.30631/sdgs.v1i1.1758Keywords:
potential evapotranspiration, climate change, merapi aquifer systemAbstract
Temperature variation due to climate change can give greatest impact on potential evapotranspiration. Increase of temperature in Yogyakarta Special Region can increase potential evapotranspiration. It is necessary to study potential evapotranspiration as one of indication impact of climate change to its potential evapotranspiration. Potential evapotranspiration (PET) can be estimated applying Hargreaves and Samani (1982) that requires limited meteorological parameter. Therefore, this research aims are: a) to analyze daily PET in 3 gauge station of Merapi Aquifer System, b) to analyze variation PET in the 3 gauge stations of Merapi Aquifer System.
The largest values of PET is in Barongan station, while the lowest is in Adisucipto station. It is probably because Adisucipto station is located in urban and crowded areas. PET values are mostly 1.98 mm/day in rainy season, while 1.67 mm/day in dry season. Mostly, the correlation coefficient is low in dry season for Pluyon, Barongan and Adisucipto stations suggesting that drier and warmer temperature due to climate change do not have large impact to PET. The 5-month moving average trend also confirm the relatively stable line of PET variation from January 2005 to December 2016 reflecting that climate change do not greatly impact on PET in Merapi Aquifer System.
References
Ahamed, A., Knight, R., Alam, S., Pauloo, R., & Melton, F. (2022). Assessing the utility of remote
sensing data to accurately estimate changes in groundwater storage. Science of the Total
Environment, 807(150635). doi:https://doi.org/10.1016/j.scitotenv.2021.150635
Allen, R., Pereira, L., Raes, D., & Smith, M. (1998). Crop evapotranspiration”guidelines for computing
crop water requirements”FAO Irrigationand Drainage Paper 56. In.
Barik, M. G., Hogue, T. S., Franz, K. J., & Kinoshita, A. M. (2016). Assessing Satellite and Ground-Based
Potential Evapotranspiration for Hydrologic Applications in the Colorado River Basin. Journal
of the American Water Resources Association, 52(1).
Carlson, T. N., & Arthur, S. T. (2000). The impact of land use ” land cover changes due to
urbanization on surface microclimate and hydrology: a satellite perspective. Global and
Planetary Change, 25, 49–65. doi:S0921- 8181 00 00021-7
Goyal, R. K. (2004). Sensitivity of evapotranspiration to global warming: a case study of arid zone of
Rajasthan (India). Agricultural Water Management, 69, 1-11.
doi:10.1016/j.agwat.2004.03.014
Hargreaves, G., & Samani, Z. (1985). Reference crop evapotranspiration from ambient air
temperature. Paper presented at the Winter meeting”American Society of Agricultural
Engineers: the world food situation”now and year 2007, St. Joseph, Chicago.
Hargreaves, G. H., & Samani, Z. A. (1982). Estimating potential evapotranspiration. J. Irrig. and Drain
Engr, 108(IR3), 223-230.
Huo, Z., Dai, X., Feng, S., Kang, S., & Huang, G. (2013). Effect of climate change on reference
evapotranspiration and aridity index in arid region of China. Journal of Hydrology, 492, 24-34.
doi:https://dx.doi.org/10.1016/j.jhydrol.2013.04.011
Koelbing, M., Schuetz, T., & Weiler, M. (2021). Downscaling potential evapotranspiration to the
urban canyon. Hydrol. Earth Syst. Sci. Discuss., 2021, 1-23. doi:10.5194/hess-2021-24
Mazrooei, A., Reitz, M., Wang, D., & Sankarasubramanian, A. (2021). Urbanization Impacts on
Evapotranspiration Across Various Spatio-Temporal Scales. Earth's Future, 9(8),
e2021EF002045. doi:https://doi.org/10.1029/2021EF002045
McCabe, M. F., & Wood, E. F. (2006). Scale influences on the remote estimation of
evapotranspiration using multiple satellite sensors Remote Sensing of Environment, 105, 271-
Niel, J. D., Uytven, E. V., & Willems, P. (2019). On the correlation between precipitation and potential
evapotranspiration climate change signals for hydrological impact analyses. Hydrological
Sciences Journal, 64(4), 420-433. doi:https://doi.org/10.1080/02626667.2019.1587615
Priestley, C. H. B., & Taylor, R. J. (1972). On the assessment of surface heat fluxes and evaporation
using large-scale parameters. Monthly Weather Rev, 100, 81-92.
Rim, C.-S. (2009). The effects of urbanization, geographical and topographical conditions on
reference evapotranspiration. Climatic Change, 97, 483–514. doi:10.1007/s10584-009-9618-y
Srivastava, A., Sahoo, B., Raghuwanshi, N. S., & Chatterjee, C. (2018). Modelling the dynamics of
evapotranspiration using Variable Infiltration Capacity model and regionally calibrated
Hargreaves approach. Irrigation Science. doi:https://doi.org/10.1007/s00271-018-0583-y
Sumnera, D. M., & Jacobs, J. M. (2005). Utility of Penman–Monteith, Priestley–Taylor, reference
evapotranspiration, and pan evaporation methods to estimate pasture evapotranspiration.
Journal of Hydrology, 308, 81–104. doi:10.1016/j.jhydrol.2004.10.023
Xua, C.-Y., & Singh, V. P. (2005). Evaluation of three complementary relationship evapotranspiration
models by water balance approach to estimate actual regional evapotranspiration in
different climatic regions. Journal of Hydrology, 308, 105–121.
doi:10.1016/j.jhydrol.2004.10.024
Ya, L., Youpeng, X., & Yi, S. (2012). Hydrological Effects of Urbanization in the Qinhuai River Basin,
China. Procedia Engineering, 28(2012 International Conference on Modern Hydraulic
Engineering), 767-771. doi:10.1016/j.proeng.2012.01.806
Zhou, J., Jiang, S., Su, B., Huang, J., Wang, Y., Zhan, M., . . . Jiang, T. (2022). Why the Effect of CO2 on
Potential Evapotranspiration Estimation Should Be Considered in Future Climate. Water,
(6), 986.








