Prediksi Customer Churn Menggunakan Metode CRISP-DM Pada Industri Telekomunikasi Sebagai Implementasi Mempertahankan Pelanggan

Authors

  • Yudi Yudiana Universitas Nahdlatul Ulama Indonesia
  • Asiroch Yulia Agustina Universitas Nahdlatul Ulama Indonesia
  • Nur Khofifah Universitas Nahdlatul Ulama Indonesia

DOI:

https://doi.org/10.30631/ijoieb.v8i1.1710

Keywords:

Loyal customer, quality service, retention, CRISP-DM

Abstract

Fulfilling the needs and desires of customers is a strategy in retaining customers. Among these strategies is a quality product and quality service will also fulfill customer expectations. The purpose of this research is to predict whether customers will become loyal customer or leave the company's services. The research method uses the CRISP-DM (Cross Industry Standard Process for Data Mining) technique and the hypermeter tuning method with the ridge classifier algorithm and the confusion matrix. CRISP-DM is a process model that serves as the base for a data science process with six sequential phases. The data used is 7,043 records. divided into 70:30 data train and data test. From the selection of features, most unsubscribed customers are customers who do not use several services such as VPN, Data Backup, Device Protection, Technician Assistance, TV Streaming, Movie Streaming monthly contracts and use the E-Wallets payment method. Then the results of the accuracy research using the confusion matrix show quite good results with an accuracy of 80.5%, Precision of 85.7% and Recall of 89.8%. As many as 73% or 5,174 continue to use the service and 1,869 or around 27% of customers stop using Telkom Indonesia services.

Downloads

Download data is not yet available.

References

Aditra Pradyana, G., Mahendra Darmawiguna, I. gede, & Saputra Wahyu Wijaya, I. N. 2020. Data Mining: Menemukan Pengetahuan Dalam Data (1st ed.). PT Rajagrafindo Persada.

Dwijaya, B. A., & Wirawan, S. 2021. Customer Churn Prediction in The Banking Industry Using CRISP-DM Utilizing Machine Learning Techniques. 6(2), 92–106.

Hasanah, M. A., Soim, S., & Handayani, A. S. 2021. Implementasi CRISP-DM Model Menggunakan Metode Decision Tree dengan Algoritma CART untuk Prediksi Curah Hujan Berpotensi Banjir. 5(2).

Joko Suntoro. 2019. Data Mining: Algortima dan Implementasi dengan

Pemrograman PHP (1st ed.). PT Elex Media Komputindo.

Mulaab. 2017. DATA MINING: Konsep dan Aplikasi (1st ed.). Media Nusa Creative.

Wijaya, A., & Girsang, A. S. 2016. The Use of Data Mining For Prediction of Customer Loyalty. 10(1), 41–47.

Yudiana, Agustina, & Khofifah (2023) 20

(b) JURNAL

Khumaidi, A. 2020. Data Mining for Predicting the Amount of Coffee Production Using Crisp-Dm Method. Jurnal Techno Nusa Mandiri, 17(1), 1–8. https://doi.org/10.33480/techno.v17i1.1240

Pambudi, H. K., Kusuma, P. G. A., Yulianti, F., & Julian, K. A. 2020. Prediksi Status Pengiriman Barang Menggunakan Metode Machine Learning. Jurnal Ilmiah Teknologi Infomasi Terapan, 6(2), 100–109. https://doi.org/10.33197/jitter.vol6.iss2.2020.396

Pratama, I., Chandra, A. Y., & Presetyaningrum, P. T. 2022. Seleksi Fitur dan Penanganan Imbalanced Data menggunakan RFECV dan ADASYN. Jurnal Eksplora Informatika, 11(1), 38–49. https://doi.org/10.30864/eksplora.v11i1.578

Rabiqy, Y. 2019. Pengaruh Ekspektasi Pelanggan, Kualitas Produk Dan Kepuasan Pelanggan Terhadap Loyalitas Pelanggan Internet Telkomsel Di Banda Aceh. Jurnal Bisnis Dan Kajian Strategi Manajemen, 1(1), 53–63. https://doi.org/10.35308/jbkan.v1i1.912

Rohana, T. 2020. Pengaruh Kepuasan Terhadap Loyalitas Pelanggan. Jurnal Ilmu Manajemen, 8(1), 28–32.

Rowley, J. (2005). The four Cs of customer loyalty. Marketing Intelligence and Planning, 23(6), 574–581. https://doi.org/10.1108/02634500510624138

Am, S., & Harun, H. (2023). Determining Qibla Direction of Mosques in Jambi Province : Method , Conflict , and Resolution. 01(01), 166–186.

Arrahman, A., & Yanti, I. (2022). Halal Industry in Javanese Culture; Yogyakarta Regional Government Policy in obtaining its economic values. INFERENSI: Jurnal Penelitian Sosial Keagamaan, 16(1), 151–174. https://doi.org/10.18326/infsl3.v16i1.151-174

Nengsih, T. A., Abduh, M., Ladini, U., & Mubarak, F. (2023). The Impact of Islamic Financial Development, GDP, and Population on Environmental Quality in Indonesia. International Journal of Energy Economics and Policy, 13(1), 7–13. https://doi.org/10.32479/ijeep.13727

Putra, D. . A., & Addiarrahman, A. (2023). Quranic Exegesis Journalism in Islamic Magazines in Indonesia Between 1970-1980. Journal of Indonesian Islam, 17(2), 483. https://doi.org/10.15642/jiis.2023.17.2.483-509

Rafidah, R. (2023). Indonesian islamic bank return on assets analysis: Moderating effect of musyarakah financing. Al-Uqud: Journal of Islamic Economics, 7(2), 200–216. https://journal.unesa.ac.id/index.php/jie/article/view/20310%0Ahttps://journal.unesa.ac.id/index.php/jie/article/download/20310/10813

Downloads

Published

2023-06-12

How to Cite

Yudiana, Y., Yulia Agustina, A., & Khofifah, N. (2023). Prediksi Customer Churn Menggunakan Metode CRISP-DM Pada Industri Telekomunikasi Sebagai Implementasi Mempertahankan Pelanggan. Indonesian Journal of Islamic Economics and Business, 8(1), 1–20. https://doi.org/10.30631/ijoieb.v8i1.1710