POTENTIALS OF BENGKULU’S LOCAL BIOMASS FOR BIOETHANOL PRODUCTION: A SYSTEMATIC LITERATURE REVIEW
DOI:
https://doi.org/10.30631/t2b9ec11Keywords:
bioethanol, cassava waste, coconut fiber , lignocellulosic biomass, OPEFBAbstract
The development of bioethanol based on local biomass is an important strategy to support national energy diversification. Still, the potential of Bengkulu biomass and its technical feasibility have not been systematically studied. This study aims to analyze the potential of cassava waste, coconut coir, oil palm empty fruit bunches (OPEFB), and water hyacinth as raw materials for second-generation bioethanol production, and to identify the multidimensional challenges associated with their conversion processes. The method employed is a Systematic Literature Review (SLR) with a qualitative thematic synthesis, based on the PRISMA 2020 guidelines. The search was conducted across five major databases (Scopus, Web of Science, ERIC, IEEE Xplore, and ScienceDirect) with a publication range of 2018-2025, resulting in 414 articles. Twelve articles met the criteria after a quality assessment using MMAT. The results indicate that the utilization of local biomass in Bengkulu remains fragmented. However, there is significant technical potential, including an ethanol yield of 75-180 L/ton of cassava waste, coconut coir through pretreatment with DES/NADES, OPEFB ±10% (v/v) with adaptive yeast, and water hyacinth at 7-8 g/L through SSF. The study offers a multi-feedstock conceptual framework and recommends pilot plants, LCA analyses, and economic studies to support sustainable regional implementation.
References
Abay, S., Temesgen, A., Yemata, A., Adugna, A., Asab, A., & Tadesse, A. (2025). Improvement of bioethanol production from water hyacinth biomass by optimization of fermentation process conditions using response surface methodology. Discover Applied Sciences, 7(266). https://doi.org/10.1007/s42452-025-06635-9
Adrina, P., & Fatisa, Y. (2024). BIFOWREN ( Bioethanol From Organic Waste As Renewable Energy ) : Review Pemanfaatan Berbagai Macam Limbah Organik Menjadi Bioetanol. 6(01), 98–116. https://doi.org/10.25299/jrec.2024.vol6(2).17325
Anuchi, S. O., Campbell, K. L. S., & Hallett, J. P. (2022). Effective pretreatment of lignin ‑ rich coconut wastes using a low ‑ cost ionic liquid. Scientific Reports, 12(6108), 1–11. https://doi.org/10.1038/s41598-022-09629-4
Bearman, M. L., & Dawson, P. (2013). Qualitative synthesis and systematic review in health professions education. Medical Education, 47(3), 252–260. https://doi.org/10.1111/medu.12092
Berghuis, N. T., Salsabila, R., Fridarima, S., Azhari, A., Pabo, A., & Sari, I. P. (2023). Green Production of Chitin from Black Soldier Fly Pupae Using a Natural Deep Eutectic Solvents. Jurnal Kimia Sains Dan Aplikasi, 26(11), 437–444. https://doi.org/https://doi.org/10.14710/jksa.26.11.437-444
BPS, P. B. (2023). Provinsi Bengkulu dalam Angka 2023 (Bengkulu Province in Figures 2023). Bengkulu: BPS Provinsi Bengkulu.
Carreño-Sayago, U. F. (2019). Design of a sustainable development process between phytoremediation and production of bioethanol with Eichhornia crassipes. Environmental Monitoring and Assessment, 19(4), 221. https://doi.org/10.1007/s10661-019-7328-0
Carrera-rivera, A., Ochoa, W., Larrinaga, F., & Lasa, G. (2022). How-to conduct a systematic literature review : A quick guide for computer science research ✩. MethodsX, 9, 101895. https://doi.org/10.1016/j.mex.2022.101895
Ceaser, R., Montané, D., Constantí, M., & Medina, F. (2024). Current progress on lignocellulosic bioethanol including a technological and economical perspective. In Environment, Development and Sustainability (Issue 0123456789). Springer Netherlands. https://doi.org/10.1007/s10668-024-04792-2
Chakane, A., Nakamura, Y., & Asada, C. (2025). Total Utilization of Components Contained in Coconut Husk by Microwave ‑ Assisted Thermal Hydrolysis and Deep Eutectic Solvent Treatment. Waste and Biomass Valorization, 16(4), 1899–1910. https://doi.org/10.1007/s12649-024-02784-x
Chandrasiri, Y. S., Weerasinghe, W. M. L. I., Madusanka, D. A. T., & Manage, P. M. (2022). Waste-Based Second-Generation Bioethanol : A Solution for Future Energy Crisis. 11(1), 275–285. https://doi.org/10.14710/ijred.2022.41774
Dandasena, T. K., & Shahi, S. (2023). A Renewable Biofuel-Bioethanol: A Review. 44(S-3), 1698–1706. https://doi.org/10.17762/jaz.v44iS3.2388
Derman, E., Abdulla, R., Marbawi, H., Sabullah, M. K., & Gansau, J. A. (2022). Simultaneous Saccharification and Fermentation of Empty Fruit Bunches of Palm for Bioethanol Production Using a Microbial Consortium of S . cerevisiae and T . harzianum. Fermentation, 8(7), 1–27. https://doi.org/https://doi.org/10.3390/fermentation8070295
Devi, A., Bajar, S., Sihag, P., Ud, Z., Sheikh, D., Singh, A., & Kaur, J. (2023). A panoramic view of technological landscape for bioethanol production from various generations of feedstocks. Bioengineered, 14(1), 81–112. https://doi.org/10.1080/21655979.2022.2095702
Dinas Perkebunan, dan H. P. B. (2023). Statistik Komoditas Perkebunan Rakyat Provinsi Bengkulu Tahun 2022. Bengkulu: Dinas Perkebunan Dan Hortikultura Provinsi Bengkulu. https://ppid.bengkuluprov.go.id/storage/dokumen/2X90kzwD6nRMkyqA8fqb0KyuIQT2x7IagMfVtIqT.pdf
Dinata, F. S., & Kartawiria, I. S. (2021). Bioethanol potential from whole parts of cassava plant in indonesia. Jurnal Teknologi Industri Pertanian 31, 31(1), 20–33. https://doi.org/https://doi.org/10.24961/j.tek.ind.pert.2021.31.1.20
Djatmika, P., Listiningrum, P., Sumarno, T. B., & Mahira, D. F. (2024). Just Transition in Biofuel Development towards Low-Carbon Economy : Multi-Actor Perspectives on Policies and Practices in Indonesia. Energies, 17(1), 141. https://doi.org/10.3390/en17010141
Fatimah, N. A., Hakeki, A. Z., & Sucahyo, L. (2025). Life Cycle Assessment and Emission Mass Balance of Cassava-Based Bioethanol : A Feasibility Analysis of Environmental Impacts from Upstream to Downstream in Indonesia. 46(1), 31–39. https://doi.org/10.14710/teknik.v46i1.67533
Gani, A., Mh, N., Mamat, R., & Sarjono, R. E. (2022). Policies and laws in the application of renewable energy Indonesia : A reviews. AIMS Energy, 10(1), 23–44. https://doi.org/10.3934/energy.2022002
Gomes, D., Cruz, M., Resende, M. De, & Teixeira, J. (2021). Very High Gravity Bioethanol Revisited : Main Challenges and Advances. Fermentation, 7(1), 1–18. https://doi.org/https://doi.org/10.3390/fermentation7010038
Gozal, C., Halim, A., Ridwan, A., Wong, S. L., Young, K. G., Nataniel, J., & Kembaren, R. (2024). Valorization of Oil Palm Empty Fruit Bunches (OPEFB) for Bioethanol Production in Indonesia. Biosaintifika, 16(3), 508–517. https://doi.org/10.15294/biosaintifika.v16i3.12099
Hafyan, R. H., Bhullar, L. K., Mahadzir, S., Bilad, M. R., Abdul, N., Nordin, H., Dzul, M., Wirzal, H., Putra, Z. A., Rangaiah, G. P., & Abdullah, B. (2020). Integrated Biorefinery of Empty Fruit Bunch from Palm Oil Industries to Produce Valuable Biochemicals. Processes, 8(7), 1–24. https://doi.org/10.3390/pr8070868
Harde, C. K., & Ojha, D. K. (2025). Sustainable Chemistry for Climate Action Are ethanol-gasoline blends sustainable in India ? A life cycle perspective on benefits and trade-offs. Sustainable Chemistry for Climate Action, 7(June), 100128. https://doi.org/10.1016/j.scca.2025.100128
Harjon, A., Meurah, T., Riayatsyah, I., Ismi, C., Nadia, S., Susan, A., Hanra, A., & Erlangga, T. (2025). Industrial Crops & Products Life cycle cost of bioethanol bioeconomy of sugarcane bagasse in Indonesia. Industrial Crops & Products, 237(August), 122161. https://doi.org/10.1016/j.indcrop.2025.122161
Hong, Q. N., Fàbregues, S., Bartlett, G., Boardman, F., Cargo, M., Dagenais, P., Gagnon, M. P., Griffiths, F., Nicolau, B., O’Cathain, A., Rousseau, M. C., Vedel, I., & Pluye, P. (2018). The Mixed Methods Appraisal Tool (MMAT) version 2018 for information professionals and researchers. Education for Information, 34(4), 285–291. https://doi.org/https://doi.org/10.3233/EFI-180221
Hoyamo, G., Adane, L., Demirew, Z., & Dananto, M. (2024). Investigation of potentials Water hyacinth ( Ecchornia crassipes ) grown at Lake Koka and Lake Abaya for bioethanol production. 14(3), 13–24. https://www.isca.me/rjcs/Archives/v14/i3/2.ISCA-RJCS-2024-006.php
Irwan, I., Ode, L., Salim, A., Sciences, N., Oleo, U. H., & Baru, M. K. (2018). Bioethanol From Oil Palm Empty Fruit Bunch (OPEFB): a Review Pretreatment and Enzymatic Hydrolysis. 4251(108), 1–14. https://doi.org/10.31332/ijtk.v2i2.18
Jati, S. S., & Widayatno, T. (2022). Pengaruh Konsentrasi Kapang dan Lama Waktu Fermentasi terhadap Kadar Bioetanol dari Limbah Kulit Singkong (Manihot esculenta). Jurnal Teknik Kimia USU, 11(2), 102–109. https://doi.org/10.32734/jtk.v11i2.8279
Khabibulloh, M. J. M., Suhartatik, N., & Mustofa, A. (2024). The Future and Development of Bioethanol in Indonesia. AGRITEKNO : Jurnal Teknologi Pertanian, 13(2), 210–223. https://doi.org/10.30598/jagritekno.2024.13.1.210
Kheybari, S., Davoodi, M., Salamirad, A., & Rezaei, J. (2023). Computers & Industrial Engineering Bioethanol sustainable supply chain design : A multi-attribute bi-objective structure. Computers & Industrial Engineering, 180(April), 109258. https://doi.org/10.1016/j.cie.2023.109258
Kitchenham, B., & Charters, S. (2007). Guidelines for performing Systematic Literature Reviews in Software Engineering (EBSE Technical Report EBSE-2007-01).
Le, D. De, Vega, R. A., Salazar, S., & Aranda, Á. (2024). Toward Systematic Literature Reviews in Hydrological Sciences. Water, 16(3), 436. https://doi.org/10.3390/w16030436
Lim, K. L., Wong, W. Y., Rubinsin, N. J., Loh, S. K., And, & Lim, M. T. (2022). Techno-Economic Analysis of an Integrated Bio-Refinery for the Production of Biofuels and Value-Added Chemicals from Oil Palm Empty Fruit Bunches. Processes, 10(10), 1–20. https://doi.org/10.3390/pr10101965
Mardina, P., Irawan, C., & Dharma, M. (2021). Bioethanol Production from Cassava Peel Treated with Sulfonated Carbon Catalyzed Hydrolysis. Jurnal Kimia Sains Dan Aplikasi, 24(1), 1–8. https://doi.org/https://doi.org/10.14710/jksa.24.1.1-8
Niu, Y., Joseph, N., & Hemashini, T. (2024). Valorization of lignocellulosic biomass : Progress in the production of second-generation bioethanol. 2(2), 1–14. https://doi.org/10.1177/27533735241284221
Noblit, G. W. N., & Hare, R. D. (1988). Meta-Ethnography: Synthesizing Qualitative Studies. SAGE. https://books.google.co.id/books/about/Meta_Ethnography.html?id=fQQb4FP4NSgC&redir_esc=y
Page, M. J., Mckenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-wilson, E., Mcdonald, S., … Moher, D. (2021). The PRISMA 2020 statement : an updated guideline for reporting systematic reviews Systematic reviews and Meta-Analyses. Systematic Reviews, 10(89), 1–11. https://doi.org/10.1186/s13643-021-01626-4
Permatasari, N. U., Dali, S., & Wahyuni, E. S. (2023). Potential Cassava Peel Waste ( Manihot esculenta Crantz ) in The Production of Bioethanol by Enzymatic Hydrolysis and Fermentation Using Zymomonas mobilis Bacteria. 012(02), 87–103. https://doi.org/10.21776/ub.jpacr.2023.012.02.3304
Poornachandhra, C., Balasubramanian, G., Jayabalakrishnan, M., Lakshmanan, A., Selvakumar, S., & John, J. E. (2023). Coconut Husk Fiber : A Low-Cost Bioresource for the Synthesis of High-Value Nanocellulose. 13(6), 1–25. https://doi.org/10.33263/BRIAC136.504
Prasertsilp, P., Pattaragulwanit, K., & Kim, B. S. (2023). Microwave-assisted cassava pulp hydrolysis as food waste biorefinery for biodegradable polyhydroxybutyrate production. Frontiers in Bioengineering and Biotechnology, 11(March), 1–14. https://doi.org/10.3389/fbioe.2023.1131053
Priadi, H., Awad, S., Villot, A., Andres, Y., & Wahyu, W. (2024). Energy Conversion and Management : X Techno-enviro-economic analysis of second-generation bioethanol at plant-scale by different pre-treatments of biomass from palm oil waste. Energy Conversion and Management: X, 21(January), 100522. https://doi.org/10.1016/j.ecmx.2023.100522
Rachman, I. (2025). Sustainable Competitive Advantage in Indonesia ’ s Bioethanol Industry : Key Variables and Ecosystem Model. 7(1), 1–16. https://doi.org/10.35877/454RI.asci3784
Rahayu, D. E., Wirjodirdjo, B., & Hadi, W. (2019). Availability of empty fruit bunch as biomass feedstock for sustainability of bioenergy product ( system dynamic approach ) Availability of Empty Fruit Bunch as Biomass Feedstock for Sustainability of Bioenergy Product ( System Dynamic Approach ). AIP Conference Proceedings, 2194(1), 1–12. https://doi.org/10.1063/1.5139827
Rahman, A., Evi, A., Natsir, H., & Haidir, I. (2018). Optimasi Pretreatment melalui Metode Hydrothermal Pressure dan Pelarut Alkali pada Produksi Bioetanol dari Lemna minor. 14(1), 95–106. https://doi.org/10.20961/alchemy.14.1.15986.95-106
Sari, F. P., Falah, F., Anita, S. H., Panji, K., Permana, R., Laksana, B., Fatriasari, W., & Hermiati, E. (2021). Pretreatment of Oil Palm Empty Fruit Bunch ( OPEFB ) at Bench-Scale High Temperature-Pressure Steam Reactor for Enhancement of Enzymatic Saccharification. Journal of Renewable Energy Development, 10(2), 157–169. https://doi.org/10.14710/ijred.2021.32343
Sattar, R., Lawton, R., Panagioti, M., & Johnson, J. (2021). Meta-ethnography in healthcare research : a guide to using a meta-ethnographic approach for literature synthesis. BMC Health Services Research, 21(50), 1–13. https://doi.org/10.1186/s12913-020-06049-w
Shakilabegam, M., Boorani, E. A., Akilandeswari, P., & Pradeep, B. V. (2024). Bioethanol Production from Water Hyacinth ( Eichhornia crassipes ) using Different Microbial Inoculants. Journal of Pure and Applied Microbiology, 18(1), 323–331. https://doi.org/10.22207/JPAM.18.1.16
Siddaway, A. P., Wood, A. M., & Hedges, L. V. (2019). How to Do a Systematic Review : A Best Practice Guide for Conducting and Reporting Narrative Reviews , Meta-Syntheses. 70, 747–770. https://doi.org/10.1146/annurev-psych-010418-102803
Snyder, H. (2019). Literature review as a research methodology : An overview and guidelines. Journal of Business Research, 104(March), 333–339. https://doi.org/10.1016/j.jbusres.2019.07.039
Sokan-Adeaga, A. ., Ana, R. E. E. ., Olorunnisola, A. ., Sokan-Adeaga, M. ., Roy, H., & Reza, M. . (2024). Ethanol Production from Cassava Peels Using Saccharomyces cerevisiae via Ethanologenic Fermentation Process. Arab Gulf Journal of Scientific Research, 42, 1664–1684. https://doi.org/https://doi.org/10.1108/agjsr-06-2023-0264
Suriyachai, N., Imman, S., Kreetachat, T., & Laosiripojana, N. (2024). Enhanced bioethanol production from cassava waste : optimization of thermochemical pretreatment for maximum sugar recovery and characterisation of potential fractions. International Journal of Sustainable Energy, 43(1), 1–18. https://doi.org/10.1080/14786451.2024.2411833
Wang, Z., Zheng, F., & Xue, S. (2019). The Economic Feasibility of the Valorization of Water Hyacinth for Bioethanol Production. Sustainability, 1(3), 1–21. https://doi.org/10.3390/su11030905
Wijaya, C., Lick, N., Muharja, M., Widjaja, T., & Riadi, L. (2025). An integrated green fractionation of coconut husk : Hydrothermal and deep eutectic solvent pretreatment for enhanced sugar and lignin production. Bioresource Technology Reports, 29(November 2024), 102078. https://doi.org/10.1016/j.biteb.2025.102078
Wijaya, C., Sangadji, N. L., Muharja, M., Widjaja, T., & Riadi, L. (2025). Enhancing Monomeric Sugar Production from Coconut Husk by FeCl 3 -assisted Hydrothermal Pretreatment and Enzymatic Hydrolysis. 20(3), 535–552. https://doi.org/10.9767/bcrec.20444
Wiratmaja, I. G., & Elisa, E. (2020). Study Of Bioethanol Utilization Opportunities As The Main Fuel For Future Vehicles In Indonesia. 8(1), 1–8. https://doi.org/10.23887/jptm.v8i1.27298
Xu, J., Li, X., & Gao, T. (2022). The Multifaceted Function of Water Hyacinth in Maintaining Environmental Sustainability and the Underlying Mechanisms : A Mini Review. International Journal of Environmental Research and Public Health, 19(24), 16725. https://doi.org/https://doi.org/10.3390/ijerph192416725
Yerizam, M., Jannah, A. M., Aprianti, N., Rendana, M., Ernas, A. Q., & Lowise, J. (2023). Bioethanol production from coconut husk using DES-NADES pretreatment and enzymatic hydrolysis method. Comptes Rendus. Chimie, 26(S1), 53–62. https://doi.org/10.5802/crchim.226
Zahroh, S. ., Syamsu, K., Haditjaroko, L., & Kartawiria, I. . (2021). Potential and prospect of various raw materials for bioethanol production in Indonesia: A review. IOP Conference Series: Earth and Environmental Science, 749(012060). https://doi.org/10.1088/1755-1315/749/1/012060
Zhao, J., Xu, Y., Wang, W., Gri, J., & Wang, D. (2020). High Ethanol Concentration (77 g/L) of Industrial Hemp Biomass Achieved Through Optimizing the Relationship between Ethanol Yield/Concentration and Solid Loading. ACS Omega, 5(34), 21913–21921. https://doi.org/10.1021/acsomega.0c03135
Published
Issue
Section
License
Copyright (c) 2025 Physics and Science Education Journal (PSEJ)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The copyright to this article is transferred to Physics and Science Education Journal (PSEJ) if and when the article is accepted for publication. The undersigned hereby transfers any and all rights in and to the paper including without limitation all copyrights to PSEJ. The undersigned hereby represents and warrants that the paper is original and that he/she is the author of the paper, except for material that is clearly identified as to its original source, with permission notices from the copyright owners where required. The undersigned represents that he/she has the power and authority to make and execute this assignment.











.png)

