NEUTRON DOSE CALCULATION FOR RADIATION WORKER AND PUBLIC SAFETY IN COMPACT PROTON THERAPY CENTERS (CPTC) USING MCNP6.2 MONTE CARLO CODE

Authors

  • Annisa Dian Kusuma Diponegoro University
  • Pandji Triadyaksa Diponegoro University
  • Priyono Priyono Diponegoro University
  • Fajar Arianto Diponegoro University

DOI:

https://doi.org/10.30631/ad8wwq47

Keywords:

Proton therapy, Ambient dose equivalent, Radiation protection, Radiation shield, MCNP6.2

Abstract

This study aims to analyze the ambient equivalent dose H*(10) of neutrons and evaluate the effectiveness of radiation shielding at the Monte Carlo-based Compact Proton Therapy Center (CPTC) facility using Monte Carlo N -Particle (MCNP6.2) software with four variations in the direction of the proton beam (0°, 90°, 180°, 270°). The simulation was conducted to determine the effect of beam orientation on neutron radiation distribution in the area around the bunker, particularly in the Treatment Control Room (TCR) and door area. The simulation results showed that the dose distribution was highly dependent on the beam direction and the geometric configuration of the CPTC facility. The highest dose value was obtained from the 270° direction, which was 733 µSv/year. However, the dose is still below the dose limit set by the Nuclear Energy Regulatory Agency (BAPETEN), which is 1 mSv/year for the public, so the CPTC facility design is considered safe against secondary neutron exposure. This research contributes to the development of physics, particularly in the application of the Monte Carlo method for radiation protection analysis, and is expected to be a development asset for proton therapy in Indonesia.

References

Badan Pengawas Tenaga Nuklir (BAPETEN). (2013). Peraturan Kepala Badan Pengawas Tenaga Nuklir Nomor 3 Tahun 2013, tentang Keselamatan Radiasi dalam Penggunaan Radioterapi.

Bekelman. A. (2021). Neutron dosimetry and Shielding Verification in Commissioning of Compact Protman, J. E., Denicoff, A., & Buchsbaum, J. (2018). Randomized Trials of Proton Therapy: Why They Are at Risk, Proposed Solutions, and Implications for Evaluating Advanced Technologies to Diagnose and Treat Cancer. Journal of Clinical Oncology, 36(24), 2461-2464. https://doi.org/10.1200/JCO.2018.77.7078.

García-Fernández, G. F., Cevallos-Robalino, L. E., García-Baonza, R., Gallego, E., Vega-Carrillo, H. R., Guzman-García, K. A., et al. (2019). Monte Carlo Characterization and Benchmarking of Extended Range REM Meters for its Application in Shielding and Radiation Area Monitoring in Compact Proton Therapy Centers (CPTC). Applied Radiation and Isotopes, 152, 115–126. https://doi.org/10.1016/j.apradiso.2019.07.001.

García-Fernandez, G. F., Gallego, E., Gomez-Ros, J. M., Vega-Carrillo, H. R., Garcia-Baonza, R., Cevallos-Robalino, L. E., & Guzman-Garcia, K. A. (2021). Neutron Dosimetry and Shielding Verification in Commisioning of Compact Proton Therapy Centers (CPTC) Using MCNP6.2 Monte Carlo Code. Applied Radiation and Isotopes, 169, 109272. https://doi.org/10.1016/j.apradiso.2020.109279.

García-Fernandez, G. F., Gallego, E., Gómez-Ros, J. M., Vega-Carrillo, H. R., Guzman-García, K. A., Cevallos-Robalino, L. E., García-Baonza, R., & Hernández, E. F. (2023). Benchmarking of stray neutron fields produced by synchrocyclotrons and synchrotrons in compact protontherapy centers (CPTC) using MCNP6 Monte Carlo code. Applied Radiation and Isotopes, 193, 110645. https://doi.org/10.1016/j.apradiso.2022.110645.

Gili, E. (2022). The Issue of Radioprotection in A Proton Therapy Facility: A Critical Analysis, Doctoral dissertation, Politecnico di Torino, Italy.

Hälg, R. A., & Schneider, U. (2020). Neutron Dose and Its Measurement in Proton Therapy—Current State of Knowledge. The British journal of radiology, 93(1107), 20190412. https://doi.org/10.1259/bjr.20190412.

Hubert, M. D. S., Vargas, C. S., Hoey, O. V., Schoonjans, W., Smet, V. D., Mathot, G., Stichelbaut, F., Manessi, G., Dinar, N., Aza, E., Cassell, C., Silari, M., Vanhavere, F. (2016). Secondary Neutron Doses in A Proton Therapy Center. Radiation Protection Dosimetry, 170(4), 336-341. https://doi.org/10.1093/rpd/ncv458.

IAEA. (2006). Radiation Protection in the Design of Radiotherapy Facilities. International Atomic Energy Agency, Safety Reports Series 47. Vienna, Austria.

ICRP. (2010). Conversion Coefficients for Radiological Protection Quantities for External Radiation Exposures. ICRP Publication 116, Ann. ICRP 40(2-5).

James, S. S., Grassberger, C., & Lu, H. M. (2018). Considerations When Treating Lung Cancer with Passive Scatter or Active Scanning Proton Therapy. Translational lung cancer research, 7(2), 210-215. https://doi.org/10.21037/tlcr.2018.04.01.

Lesmana, H. (2023). Dosimetri dan Verifikasi Shielding Bunker Compact Proton Therapy Center (CPTC) Berbasis Monte Carlo, Tesis, Program Studi Magister Fisika Universitas Diponegoro, Semarang.

Lutfin, H. A. (2020). A Modelling of Paraffin Shielding for BNCT Facility at Kartini Reactor Research using MCNPX. Indonesian Journal of Physics and Nuclear Applications, 5(2), 31-37. https://doi.org/10.24246/ijpna.v5i2.31-37.

Mares, V., Farah, J., De Saint-Hubert, M., Domański, S., Domingo, C., Dommert, M., Kłodowska, M., Krzempek, K., Kuć, M., Martínez-Rovira, I., Michaś, E., Mojżeszek, N., Murawski, Ł., Ploc, O., Romero-Expósito, M., Tisi, M., Trompier, F., Van Hoey, O., Van Ryckeghem, L., Wielunski, M., Harrison, R. M., Stolarczyk, L., & Olko, P. (2022). Neutron Radiation Dose Measurements in a Scanning Proton Therapy Room: Can Parents Remain Near Their Children During Treatment?. Frontiers in oncology, 12, 903706. https://doi.org/10.3389/fonc.2022.903706.

Paterson, L. C., Festarini, A., Stuart, M., Ali, F., Costello, C., Boyer, C., Rogge, R., Ybarra, N., Kildea, J., & Richardson, R. B. (2022). High-Accuracy Relative Biological Effectiveness Values Following Low-Dose Thermal Neutron Exposures Support Bimodal Quality Factor Response with Neutron Energy. International Journal of Molecular Sciences, 23(2), 878. https://doi.org/10.3390/ijms23020878.

Raychaudri, S. (2008). Introduction to Monte Carlo Simulation. In Proceedings of The 2008 Winter Simulation Conference, 91-100. https://doi.org/10.1109/WSC.2008.4736059.

Rutenberg, M. S., & Nichols, R. C. (2020). Proton Beam Radiotherapy for Pancreas Cancer. Journal of Gastrointestinal Oncology, 11(1), 166. https://doi.org/10.21037/jgo.2019.03.02.

Saeed, A., Nafee, S. S., Shaheen, S. A., Raouf, G. A., Al-Hadeethi, Y., Kamal, S. M., & Razvi, M. A. N. (2016). Calculating the ambient dose equivalent of fast neutrons using elemental composition of human body. Applied Mathematics and Computation, 274, 604-610. https://doi.org/10.1016/j.amc.2015.11.037.

Stricklin, D. L., VanHorne-Sealy, J., Rios, C. I., Scott Carnell, L. A., & Taliaferro, L. P. (2021). Neutron Radiobiology and Dosimetry. Radiation Research, 195, 480-496. https://doi.org/10.1667/RADE-20-00213.1.

Tanzifi, G., & Koshki, A. A. (2024). Translation of Radiation Protection in Nuclear Medicine. Eurasian Journal of Chemical, Medicinal and Petroleum Research, 3(3), 775-781.

Titt, U., Pera, E., & Gillin, M. T. (2020). Monte Carlo Simulations of Neutron Ambient Dose Equivalent in A Novel Proton Therapy Facility Design. International Journal of Particle Therapy, 6(4), 29-37. https://doi.org/10.14338/IJPT-19-00071.1.

Verma, V., Mishra, M. V., & Mehta, M. P. (2016). A systematic review of the cost and cost‐effectiveness studies of proton radiotherapy. Cancer, 122(10), 1483-1501. https://doi.org/10.1002/cncr.29882.

Published

2026-01-04

How to Cite

NEUTRON DOSE CALCULATION FOR RADIATION WORKER AND PUBLIC SAFETY IN COMPACT PROTON THERAPY CENTERS (CPTC) USING MCNP6.2 MONTE CARLO CODE. (2026). Physics and Science Education Journal (PSEJ), 5(3). https://doi.org/10.30631/ad8wwq47