Model Prediction of Built-Up Land Use on Flood-Prone Areas (a Systematic Literature Review)

Authors

  • Ayu Mardalena Universitas Indonesia

DOI:

https://doi.org/10.30631/bumi.v2i01.2415

Keywords:

PRISM, LAND USE, Flood, spatial modelling

Abstract

Land use is dynamic due to the influence of population growth in an area. High population growth leads to uncontrolled and unplanned changes in land use in an area, resulting in environmental damage, especially in disaster-prone areas. The aim of this study is to review various models suitable for predicting changes in land use concerning flood-prone areas using a literature review method with PRISM guidelines and visualizing literature results using VosViewer software (1.6.19). The results of this study show that SD (System Dynamic Model) and CA-MC (Cellular Automata – Markov Chain) are the most commonly used models in land use change prediction. Meanwhile, the variables most suitable for land use studies, especially built-up land in relation to flood disasters, are population, growth rate, rainfall, slope, GDP, distance from (roads, rivers, and city centers), and LULC.

References

Alsabhan, A. H., Singh, K., Sharma, A., Alam, S., Pandey, D. D., Rahman, S. A. S., Khursheed, A., & Munshi, F. M. (2022). Landslide susceptibility assessment in the Himalayan range based along Kasauli – Parwanoo road corridor using weight of evidence, information value, and frequency ratio. Journal of King Saud University - Science, 34(2). https://doi.org/10.1016/j.jksus.2021.101759

Ankrah, J., Monteiro, A., & Madureira, H. (2022). Bibliometric Analysis of Data Sources and Tools for Shoreline Change Analysis and Detection. In Sustainability (Switzerland) (Vol. 14, Issue 9). MDPI. https://doi.org/10.3390/su14094895

Benchelha, N., Bezza, M., Belbounaguia, N., Benchelha, S., & Benchelha, M. (2022). Modeling Dynamic Urban Growth Using Cellular Automata and Geospatial Technique: Case of Casablanca in Morocco. International Journal of Geoinformatics, 18(5), 27–40. https://doi.org/10.52939/ijg.v18i5.2369

Debnath, J., Sahariah, D., Lahon, D., Nath, N., Chand, K., Meraj, G., Farooq, M., Kumar, P., Kanga, S., & Singh, S. K. (2022). Geospatial modeling to assess the past and future land use-land cover changes in the Brahmaputra Valley, NE India, for sustainable land resource management. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-022-24248-2

Dede, M., Asdak, C., & Setiawan, I. (2022). Spatial dynamics model of land use and land cover changes: A comparison of CA, ANN, and ANN-CA. Register: Jurnal Ilmiah Teknologi Sistem Informasi, 8(1), 38–49. https://doi.org/10.26594/register.v8i1.2339

Faksomboon, B. (2023). Predicting Spatial Land Use and Land Cover Change Using an Integrated Mathematical Model in the Khlong Nam Lai Watershed, Kamphaeng Phet Province, Thailand. EnvironmentAsia, 16(1), 16–27. https://doi.org/10.14456/ea.2023.2

Kumar, V., Singh, V. K., Gupta, K., & Jha, A. K. (2021). Integrating Cellular Automata and Agent-Based Modeling for Predicting Urban Growth: A Case of Dehradun City. Journal of the Indian Society of Remote Sensing, 49(11), 2779–2795. https://doi.org/10.1007/s12524-021-01418-2

Lai, Z., Chen, C., Chen, J., Wu, Z., Wang, F., & Li, S. (2022). Multi-Scenario Simulation of Land-Use Change and Delineation of Urban Growth Boundaries in County Area: A Case Study of Xinxing County, Guangdong Province. Land, 11(9). https://doi.org/10.3390/land11091598

Leta, M. K., Demissie, T. A., & Tränckner, J. (2021). Modeling and prediction of land use land cover change dynamics based on land change modeler (Lcm) in nashe watershed, upper blue nile basin, Ethiopia. Sustainability (Switzerland), 13(7). https://doi.org/10.3390/su13073740

Li, J., Cao, Y., Li, Y., Chu, J., Wang, Y., & Ma, M. (2023). Using EL-CA Model to Predict Multi-Scenario Land Sustainable Use Simulation and Urban Development. Journal of Experimental Nanoscience, 18(1). https://doi.org/10.1080/17458080.2023.2170352

Li, W., Li, P., Feng, Z., & Xiao, C. (2022). GIS-Based Modeling of Human Settlement Suitability for the Belt and Road Regions. International Journal of Environmental Research and Public Health, 19(10). https://doi.org/10.3390/ijerph19106044

Liang, X., Guan, Q., Clarke, K. C., Liu, S., Wang, B., & Yao, Y. (2021a). Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Computers, Environment and Urban Systems, 85. https://doi.org/10.1016/j.compenvurbsys.2020.101569

Liang, X., Guan, Q., Clarke, K. C., Liu, S., Wang, B., & Yao, Y. (2021b). Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Computers, Environment and Urban Systems, 85. https://doi.org/10.1016/j.compenvurbsys.2020.101569

Liu, H., Zheng, M., Liu, J., & Zheng, X. (2020). Sustainable land use in the trans-provincial marginal areas in China. Resources, Conservation and Recycling, 157. https://doi.org/10.1016/j.resconrec.2020.104783

Mallick, J., Alqadhi, S., Talukdar, S., Pradhan, B., Bindajam, A. A., Islam, A. R. M. T., & Dajam, A. S. (2021). A novel technique for modeling ecosystem health condition: A case study in Saudi Arabia. Remote Sensing, 13(13). https://doi.org/10.3390/rs13132632

Oyewola, D. O., & Dada, E. G. (2022). Exploring machine learning: a scientometrics approach using bibliometrix and VOSviewer. SN Applied Sciences, 4(5). https://doi.org/10.1007/s42452-022-05027-7

Phinyoyang, A., & Ongsomwang, S. (2021). Optimizing land use and land cover allocation for flood mitigation using land use change and hydrological models with goal programming, chaiyaphum, Thailand. Land, 10(12). https://doi.org/10.3390/land10121317

Priyono, K. D., Jumadi, Saputra, A., & Fikriyah, V. N. (2020). Risk analysis of landslide impacts on settlements in Karanganyar, Central Java, Indonesia. International Journal of GEOMATE, 19(73), 100–107. https://doi.org/10.21660/2020.73.34128

Rethlefsen, M. L., Kirtley, S., Waffenschmidt, S., Ayala, A. P., Moher, D., Page, M. J., Koffel, J. B., Blunt, H., Brigham, T., Chang, S., Clark, J., Conway, A., Couban, R., de Kock, S., Farrah, K., Fehrmann, P., Foster, M., Fowler, S. A., Glanville, J., ... Young, S. (2021). PRISMA-S: an extension to the PRISMA Statement for Reporting Literature Searches in Systematic Reviews. Systematic Reviews, 10(1). https://doi.org/10.1186/s13643-020-01542-z

Rizeei, H. M., Pradhan, B., & Saharkhiz, M. A. (2019). Surface runoff estimation and prediction regarding LULC and climate dynamics using coupled LTM, optimized arima and distributed-GIS-based SCS-CN models at tropical region. In Lecture Notes in Civil Engineering (Vol. 9, pp. 1103–1126). Springer. https://doi.org/10.1007/978-981-10-8016-6_78

Ruben, G. B., Zhang, K., Dong, Z., & Xia, J. (2020). Analysis and projection of land-use/land-cover dynamics through scenario-based simulations using the CA-Markov model: A case study in guanting reservoir basin, China. Sustainability (Switzerland), 12(9). https://doi.org/10.3390/su12093747

Sadhwani, K., Eldho, T. I., Jha, M. K., & Karmakar, S. (2022). Effects of Dynamic Land Use/Land Cover Change on Flow and Sediment Yield in a Monsoon-Dominated Tropical Watershed. Water (Switzerland), 14(22). https://doi.org/10.3390/w14223666

Sajan, B., Mishra, V. N., Kanga, S., Meraj, G., Singh, S. K., & Kumar, P. (2022). Cellular Automata-Based Artificial Neural Network Model for Assessing Past, Present, and Future Land Use/Land Cover Dynamics. Agronomy, 12(11). https://doi.org/10.3390/agronomy12112772

Setiawan, O., & Nandini, R. (2022). Integration of LULC change/prediction and hydrological modeler for assessment of the effect of LULC Change on peak discharge in Sari Watershed, Sumbawa Island, Indonesia. IOP Conference Series: Earth and Environmental Science, 1109(1). https://doi.org/10.1088/1755-1315/1109/1/012070

Srichaichana, J., Trisurat, Y., & Ongsomwang, S. (2019). Land use and land cover scenarios for optimum water yield and sediment retention ecosystem services in Klong U-Tapao watershed, Songkhla, Thailand. Sustainability (Switzerland), 11(10). https://doi.org/10.3390/su11102895

Supriatna, Supriatna, J., Koestoer, R. H., & Takarina, N. D. (2016). Spatial Dynamics Model for Sustainability Landscape in Cimandiri Estuary, West Java, Indonesia. Procedia - Social and Behavioral Sciences, 227, 19–30. https://doi.org/10.1016/j.sbspro.2016.06.038

Umar, D. A., Ramli, M. F., Tukur, A. I., Jamil, N. R., & Zaudi, M. A. (2021). Detection and prediction of land use change impact on the streamflow regime in Sahelian river basin, northwestern Nigeria. H2Open Journal, 4(1), 92–113. https://doi.org/10.2166/H2OJ.2021.065

Utami, R., Kumala Putri, E. I., & Ekayani, M. (2017). Economy and Environmental Impact of Oil Palm Palm Plantation Expansion (Case Study: Panyabungan Village, Merlung Sub-District, West Tanjung Jabung Barat District, Jambi). Jurnal Ilmu Pertanian Indonesia, 22(2), 115–126. https://doi.org/10.18343/jipi.22.2.115

Wang, B., Liang, Y., & Peng, S. (2022). Harnessing the indirect effect of urban expansion for mitigating agriculture-environment trade-offs in the Loess Plateau. Land Use Policy, 122. https://doi.org/10.1016/j.landusepol.2022.106395

Wayan Gede Krisna Arimjaya, I., & Dimyati, M. (2022). Remote sensing and geographic information systems technics for spatial-based development planning and policy. International Journal of Electrical and Computer Engineering, 12(5), 5073–5083. https://doi.org/10.11591/ijece.v12i5.pp5073-5083

Yangouliba, G. I., Zoungrana, B. J. B., Hackman, K. O., Koch, H., Liersch, S., Sintondji, L. O., Dipama, J. M., Kwawuvi, D., Ouedraogo, V., Yabré, S., Bonkoungou, B., Sougué, M., Gadiaga, A., & Koffi, B. (2022). Modelling past and future land use and land cover dynamics in the Nakambe River Basin, West Africa. Modeling Earth Systems and Environment. https://doi.org/10.1007/s40808-022-01569-2

Zhang, P., Liu, L., Yang, L., Zhao, J., Li, Y., Qi, Y., Ma, X., & Cao, L. (2023). Exploring the response of ecosystem service value to land use changes under multiple scenarios coupling a mixed-cell cellular automata model and system dynamics model in Xi'an, China. Ecological Indicators, 147. https://doi.org/10.1016/j.ecolind.2023.110009

Downloads

Published

2024-08-07

How to Cite

Model Prediction of Built-Up Land Use on Flood-Prone Areas (a Systematic Literature Review). (2024). BUMI: International Journal of Environmental Reviews, 2(01), 11-21. https://doi.org/10.30631/bumi.v2i01.2415